Package: lolR 2.1
lolR: Linear Optimal Low-Rank Projection
Supervised learning techniques designed for the situation when the dimensionality exceeds the sample size have a tendency to overfit as the dimensionality of the data increases. To remedy this High dimensionality; low sample size (HDLSS) situation, we attempt to learn a lower-dimensional representation of the data before learning a classifier. That is, we project the data to a situation where the dimensionality is more manageable, and then are able to better apply standard classification or clustering techniques since we will have fewer dimensions to overfit. A number of previous works have focused on how to strategically reduce dimensionality in the unsupervised case, yet in the supervised HDLSS regime, few works have attempted to devise dimensionality reduction techniques that leverage the labels associated with the data. In this package and the associated manuscript Vogelstein et al. (2017) <arxiv:1709.01233>, we provide several methods for feature extraction, some utilizing labels and some not, along with easily extensible utilities to simplify cross-validative efforts to identify the best feature extraction method. Additionally, we include a series of adaptable benchmark simulations to serve as a standard for future investigative efforts into supervised HDLSS. Finally, we produce a comprehensive comparison of the included algorithms across a range of benchmark simulations and real data applications.
Authors:
lolR_2.1.tar.gz
lolR_2.1.zip(r-4.5)lolR_2.1.zip(r-4.4)lolR_2.1.zip(r-4.3)
lolR_2.1.tgz(r-4.4-any)lolR_2.1.tgz(r-4.3-any)
lolR_2.1.tar.gz(r-4.5-noble)lolR_2.1.tar.gz(r-4.4-noble)
lolR_2.1.tgz(r-4.4-emscripten)lolR_2.1.tgz(r-4.3-emscripten)
lolR.pdf |lolR.html✨
lolR/json (API)
# Install 'lolR' in R: |
install.packages('lolR', repos = c('https://neurodata.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/neurodata/lol/issues
Last updated 4 years agofrom:86698eae5c. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | WARNING | Nov 11 2024 |
R-4.5-linux | WARNING | Nov 11 2024 |
R-4.4-win | WARNING | Nov 11 2024 |
R-4.4-mac | WARNING | Nov 11 2024 |
R-4.3-win | WARNING | Nov 11 2024 |
R-4.3-mac | WARNING | Nov 11 2024 |
Exports:lol.classify.nearestCentroidlol.classify.randomChancelol.classify.randomGuesslol.embedlol.project.bayes_optimallol.project.dplol.project.lollol.project.lrccalol.project.lrldalol.project.pcalol.project.plslol.project.rplol.sims.cigarlol.sims.crosslol.sims.fat_tailslol.sims.khumplol.sims.kidentlol.sims.mean_difflol.sims.qdtoeplol.sims.rev_rtrunklol.sims.rtrunklol.sims.toeplol.sims.xor2lol.xval.evallol.xval.optimal_dimselectlol.xval.split
Dependencies:abindclicolorspaceDEoptimRfansifarverfit.modelsggplot2gluegtableirlbaisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepcaPPpillarpkgconfigplsR6RColorBrewerrlangrobustrobustbaserrcovscalestibbleutf8vctrsviridisLitewithr
Nearest Centroid Classifier
Rendered fromnearestCentroid.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-01-25
Data Piling
Rendered fromdp.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-04-13
Extending lolR with Arbitrary Classification Algorithms
Rendered fromextend_classification.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-02-01
Extending lolR for Arbitrary Embedding Algorithms
Rendered fromextend_embedding.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-02-01
Linear Optimal Low-Rank Projection (LOL)
Rendered fromlol.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2017-12-13
Low-Rank Canonical Correlation Analysis (LR-CCA)
Rendered fromlrcca.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2017-12-13
Low-Rank Linear Discriminant Analysis
Rendered fromlrlda.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2017-12-13
Principal Component Analysis (PCA)
Rendered frompca.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2017-12-13
Partial Least-Squares (PLS)
Rendered frompls.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-03-15
Low-Rank Canonical Correlation Analysis (LR-CCA)
Rendered fromrp.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2018-04-13
LOL Simulations
Rendered fromsimulations.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-06-01
Started: 2017-12-14
LOL Cross-Validation
Rendered fromxval.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2018-04-13
Started: 2017-12-14