
Package: lolR (via r-universe)
September 12, 2024

Type Package

Title Linear Optimal Low-Rank Projection

Version 2.1

Date 2020-06-20

Maintainer Eric Bridgeford <ericwb95@gmail.com>

Description Supervised learning techniques designed for the situation
when the dimensionality exceeds the sample size have a tendency
to overfit as the dimensionality of the data increases. To
remedy this High dimensionality; low sample size (HDLSS)
situation, we attempt to learn a lower-dimensional
representation of the data before learning a classifier. That
is, we project the data to a situation where the dimensionality
is more manageable, and then are able to better apply standard
classification or clustering techniques since we will have
fewer dimensions to overfit. A number of previous works have
focused on how to strategically reduce dimensionality in the
unsupervised case, yet in the supervised HDLSS regime, few
works have attempted to devise dimensionality reduction
techniques that leverage the labels associated with the data.
In this package and the associated manuscript Vogelstein et al.
(2017) <arXiv:1709.01233>, we provide several methods for
feature extraction, some utilizing labels and some not, along
with easily extensible utilities to simplify cross-validative
efforts to identify the best feature extraction method.
Additionally, we include a series of adaptable benchmark
simulations to serve as a standard for future investigative
efforts into supervised HDLSS. Finally, we produce a
comprehensive comparison of the included algorithms across a
range of benchmark simulations and real data applications.

Depends R (>= 3.4.0)

License GPL-2

URL https://github.com/neurodata/lol

Imports ggplot2, abind, MASS, irlba, pls, robust, robustbase

1

https://arxiv.org/abs/1709.01233
https://github.com/neurodata/lol

2 Contents

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, parallel, randomForest, latex2exp,
testthat, covr

Repository https://neurodata.r-universe.dev

RemoteUrl https://github.com/neurodata/lol

RemoteRef HEAD

RemoteSha 86698eae5c5ca4050c10e45ddcdfc24bc5c630f5

Contents
lol.classify.nearestCentroid . 3
lol.classify.rand . 4
lol.classify.randomChance . 4
lol.classify.randomGuess . 5
lol.embed . 6
lol.project.bayes_optimal . 7
lol.project.dp . 8
lol.project.lol . 9
lol.project.lrcca . 11
lol.project.lrlda . 12
lol.project.pca . 13
lol.project.pls . 15
lol.project.rp . 16
lol.sims.cigar . 17
lol.sims.cross . 18
lol.sims.fat_tails . 19
lol.sims.khump . 20
lol.sims.kident . 22
lol.sims.ktrunk . 23
lol.sims.mean_diff . 24
lol.sims.qdtoep . 26
lol.sims.random_rotate . 27
lol.sims.rev_rtrunk . 28
lol.sims.rotation . 29
lol.sims.rtrunk . 30
lol.sims.sim_gmm . 31
lol.sims.toep . 32
lol.sims.xor2 . 33
lol.utils.decomp . 34
lol.utils.deltas . 35
lol.utils.info . 35
lol.utils.ohe . 36

lol.classify.nearestCentroid 3

lol.xval.eval . 37
lol.xval.optimal_dimselect . 40
lol.xval.split . 43
predict.nearestCentroid . 44
predict.randomChance . 45
predict.randomGuess . 46

Index 48

lol.classify.nearestCentroid

Nearest Centroid Classifier Training

Description

A function that trains a classifier based on the nearest centroid.

Usage

lol.classify.nearestCentroid(X, Y, ...)

Arguments

X [n, d] the data with n samples in d dimensions.
Y [n] the labels of the n samples.
... optional args.

Value

A list of class nearestCentroid, with the following attributes:

centroids [K, d] the centroids of each class with K classes in d dimensions.
ylabs [K] the ylabels for each of the K unique classes, ordered.
priors [K] the priors for each of the K classes.

Details

For more details see the help vignette: vignette("centroid", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.nearestCentroid(X, Y)

4 lol.classify.randomChance

lol.classify.rand Random Classifier Utility

Description

A function for random classifiers.

Usage

lol.classify.rand(X, Y, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the n samples.

... optional args.

Value

A structure, with the following attributes:

ylabs [K] the ylabels for each of the K unique classes, ordered.

priors [K] the priors for each of the K classes.

Author(s)

Eric Bridgeford

lol.classify.randomChance

Randomly Chance Classifier Training

Description

A function that predicts the maximally present class in the dataset. Functionality consistent with
the standard R prediction interface so that one can compute the "chance" accuracy with minimal
modification of other classification scripts.

Usage

lol.classify.randomChance(X, Y, ...)

lol.classify.randomGuess 5

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the n samples.

... optional args.

Value

A list of class randomGuess, with the following attributes:

ylabs [K] the ylabels for each of the K unique classes, ordered.

priors [K] the priors for each of the K classes.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.randomChance(X, Y)

lol.classify.randomGuess

Randomly Guessing Classifier Training

Description

A function that predicts by randomly guessing based on the pmf of the class priors. Functionality
consistent with the standard R prediction interface so that one can compute the "guess" accuracy
with minimal modification of other classification scripts.

Usage

lol.classify.randomGuess(X, Y, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the n samples.

... optional args.

6 lol.embed

Value

A list of class randomGuess, with the following attributes:

ylabs [K] the ylabels for each of the K unique classes, ordered.
priors [K] the priors for each of the K classes.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.randomGuess(X, Y)

lol.embed Embedding

Description

A function that embeds points in high dimensions to a lower dimensionality.

Usage

lol.embed(X, A, ...)

Arguments

X [n, d] the data with n samples in d dimensions.
A [d, r] the embedding matrix from d to r dimensions.
... optional args.

Value

an array [n, r] the original n points embedded into r dimensions.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.lol(X=X, Y=Y, r=5) # use lol to project into 5 dimensions
Xr <- lol.embed(X, model$A)

lol.project.bayes_optimal 7

lol.project.bayes_optimal

Bayes Optimal

Description

A function for recovering the Bayes Optimal Projection, which optimizes Bayes classification.

Usage

lol.project.bayes_optimal(X, Y, mus, Sigmas, priors, ...)

Arguments

X [n, p] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

... optional args.

Value

A list of class embedding containing the following:

A [d, K] the projection matrix from d to K dimensions.

d the eigen values associated with the eigendecomposition.

ylabs [K] vector containing the K unique, ordered class labels.

centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.

priors [K] vector containing the K prior probabilities for the unique, ordered classes.

Xr [n, K] the n data points in reduced dimensionality K.

cr [K, K] the K centroids in reduced dimensionality K.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
obtain bayes-optimal projection of the data
model <- lol.project.bayes_optimal(X=X, Y=Y, mus=data$mus,

S=data$Sigmas, priors=data$priors)

8 lol.project.dp

lol.project.dp Data Piling

Description

A function for implementing the Maximal Data Piling (MDP) Algorithm.

Usage

lol.project.dp(X, Y, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

... optional args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

ylabs [K] vector containing the K unique, ordered class labels.

centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.

priors [K] vector containing the K prior probabilities for the unique, ordered classes.

Xr [n, r] the n data points in reduced dimensionality r.

cr [K, r] the K centroids in reduced dimensionality r.

Details

For more details see the help vignette: vignette("dp", package = "lolR")

Author(s)

Minh Tang and Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.dp(X=X, Y=Y) # use mdp to project into maximal data piling

lol.project.lol 9

lol.project.lol Linear Optimal Low-Rank Projection (LOL)

Description

A function for implementing the Linear Optimal Low-Rank Projection (LOL) Algorithm. This
algorithm allows users to find an optimal projection from ‘d‘ to ‘r‘ dimensions, where ‘r « d‘, by
combining information from the first and second moments in thet data.

Usage

lol.project.lol(
X,
Y,
r,
second.moment.xfm = FALSE,
second.moment.xfm.opts = list(),
first.moment = "delta",
second.moment = "linear",
orthogonalize = FALSE,
robust.first = TRUE,
robust.second = FALSE,
...

)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

r the rank of the projection. Note that r >= K, and r < d.
second.moment.xfm

whether to use extraneous options in estimation of the second moment compo-
nent. The transforms specified should be a numbered list of transforms you wish
to apply, and will be applied in accordance with second.moment.

second.moment.xfm.opts

optional arguments to pass to the second.moment.xfm option specified. Should
be a numbered list of lists, where second.moment.xfm.opts[[i]] corresponds
to the optional arguments for second.moment.xfm[[i]]. Defaults to the de-
fault options for each transform scheme.

first.moment the function to capture the first moment. Defaults to 'delta'.

• 'delta' capture the first moment with the hyperplane separating the per-
class means.

• FALSE do not capture the first moment.

second.moment the function to capture the second moment. Defaults to 'linear'.

10 lol.project.lol

• 'linear' performs PCA on the class-conditional data to capture the sec-
ond moment, retaining the vectors with the top singular values. Transform
options for second.moment.xfm and arguments in second.moment.opts
should be in accordance with the trailing arguments for lol.project.lrlda.

• 'quadratic' performs PCA on the data for each class separately to cap-
ture the second moment, retaining the vectors with the top singular values
from each class’s PCA. Transform options for second.moment.xfm and ar-
guments in second.moment.opts should be in accordance with the trailing
arguments for lol.project.pca.

• 'pls' performs PLS on the data to capture the second moment, retain-
ing the vectors that maximize the correlation between the different classes.
Transform options for second.moment.xfm and arguments in second.moment.opts
should be in accordance with the trailing arguments for lol.project.pls.

• FALSE do not capture the second moment.

orthogonalize whether to orthogonalize the projection matrix. Defaults to FALSE.

robust.first whether to perform PCA on a robust estimate of the first moment component or
not. A robust estimate corresponds to usage of medians. Defaults to TRUE.

robust.second whether to perform PCA on a robust estimate of the second moment component
or not. A robust estimate corresponds to usage of a robust covariance matrix,
which requires d < n. Defaults to FALSE.

... trailing args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

ylabs [K] vector containing the K unique, ordered class labels.

centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.

priors [K] vector containing the K prior probabilities for the unique, ordered classes.

Xr [n, r] the n data points in reduced dimensionality r.

cr [K, r] the K centroids in reduced dimensionality r.

second.moment the method used to estimate the second moment.

first.moment the method used to estimate the first moment.

Details

For more details see the help vignette: vignette("lol", package = "lolR")

Author(s)

Eric Bridgeford

References

Joshua T. Vogelstein, et al. "Supervised Dimensionality Reduction for Big Data" arXiv (2020).

lol.project.lrcca 11

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.lol(X=X, Y=Y, r=5) # use lol to project into 5 dimensions

use lol to project into 5 dimensions, and produce an orthogonal basis for the projection matrix
model <- lol.project.lol(X=X, Y=Y, r=5, orthogonalize=TRUE)

use LRQDA to estimate the second moment by performing PCA on each class
model <- lol.project.lol(X=X, Y=Y, r=5, second.moment='quadratic')

use PLS to estimate the second moment
model <- lol.project.lol(X=X, Y=Y, r=5, second.moment='pls')

use LRLDA to estimate the second moment, and apply a unit transformation
(according to scale function) with no centering
model <- lol.project.lol(X=X, Y=Y, r=5, second.moment='linear', second.moment.xfm='unit',

second.moment.xfm.opts=list(center=FALSE))

lol.project.lrcca Low-rank Canonical Correlation Analysis (LR-CCA)

Description

A function for implementing the Low-rank Canonical Correlation Analysis (LR-CCA) Algorithm.

Usage

lol.project.lrcca(X, Y, r, ...)

Arguments

X [n, d] the data with n samples in d dimensions.
Y [n] the labels of the samples with K unique labels.
r the rank of the projection.
... trailing args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.
d the eigen values associated with the eigendecomposition.
ylabs [K] vector containing the K unique, ordered class labels.
centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.
priors [K] vector containing the K prior probabilities for the unique, ordered classes.
Xr [n, r] the n data points in reduced dimensionality r.
cr [K, r] the K centroids in reduced dimensionality r.

12 lol.project.lrlda

Details

For more details see the help vignette: vignette("lrcca", package = "lolR")

Author(s)

Eric Bridgeford and Minh Tang

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.lrcca(X=X, Y=Y, r=5) # use lrcca to project into 5 dimensions

lol.project.lrlda Low-Rank Linear Discriminant Analysis (LRLDA)

Description

A function that performs LRLDA on the class-centered data. Same as class-conditional PCA.

Usage

lol.project.lrlda(X, Y, r, xfm = FALSE, xfm.opts = list(), robust = FALSE, ...)

Arguments

X [n, d] the data with n samples in d dimensions.
Y [n] the labels of the samples with K unique labels.
r the rank of the projection.
xfm whether to transform the variables before taking the SVD.

• FALSEapply no transform to the variables.
• ’unit’unit transform the variables, defaulting to centering and scaling to

mean 0, variance 1. See scale for details and optional args.
• ’log’log-transform the variables, for use-cases such as having high variance

in larger values. Defaults to natural logarithm. See log for details and
optional args.

• ’rank’rank-transform the variables. Defalts to breaking ties with the average
rank of the tied values. See rank for details and optional args.

• c(opt1, opt2, etc.)apply the transform specified in opt1, followed by opt2,
etc.

xfm.opts optional arguments to pass to the xfm option specified. Should be a numbered
list of lists, where xfm.opts[[i]] corresponds to the optional arguments for
xfm[i]. Defaults to the default options for each transform scheme.

robust whether to use a robust estimate of the covariance matrix when taking PCA.
Defaults to FALSE.

... trailing args.

lol.project.pca 13

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

d the eigen values associated with the eigendecomposition.

ylabs [K] vector containing the K unique, ordered class labels.

centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.

priors [K] vector containing the K prior probabilities for the unique, ordered classes.

Xr [n, r] the n data points in reduced dimensionality r.

cr [K, r] the K centroids in reduced dimensionality r.

Details

For more details see the help vignette: vignette("lrlda", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.lrlda(X=X, Y=Y, r=2) # use lrlda to project into 2 dimensions

lol.project.pca Principal Component Analysis (PCA)

Description

A function that performs PCA on data.

Usage

lol.project.pca(X, r, xfm = FALSE, xfm.opts = list(), robust = FALSE, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

r the rank of the projection.

xfm whether to transform the variables before taking the SVD.

• FALSEapply no transform to the variables.

14 lol.project.pca

• ’unit’unit transform the variables, defaulting to centering and scaling to
mean 0, variance 1. See scale for details and optional arguments to be
passed with xfm.opts.

• ’log’log-transform the variables, for use-cases such as having high variance
in larger values. Defaults to natural logarithm. See log for details and
optional arguments to be passed with xfm.opts.

• ’rank’rank-transform the variables. Defalts to breaking ties with the average
rank of the tied values. See rank for details and optional arguments to be
passed with xfm.opts.

• c(opt1, opt2, etc.)apply the transform specified in opt1, followed by opt2,
etc.

xfm.opts optional arguments to pass to the xfm option specified. Should be a numbered
list of lists, where xfm.opts[[i]] corresponds to the optional arguments for
xfm[i]. Defaults to the default options for each transform scheme.

robust whether to perform PCA on a robust estimate of the covariance matrix or not.
Defaults to FALSE.

... trailing args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

d the eigen values associated with the eigendecomposition.

Xr [n, r] the n data points in reduced dimensionality r.

Details

For more details see the help vignette: vignette("pca", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.pca(X=X, r=2) # use pca to project into 2 dimensions

lol.project.pls 15

lol.project.pls Partial Least-Squares (PLS)

Description

A function for implementing the Partial Least-Squares (PLS) Algorithm.

Usage

lol.project.pls(X, Y, r, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

r the rank of the projection.

... trailing args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

ylabs [K] vector containing the K unique, ordered class labels.

centroids [K, d] centroid matrix of the K unique, ordered classes in native d dimensions.

priors [K] vector containing the K prior probabilities for the unique, ordered classes.

Xr [n, r] the n data points in reduced dimensionality r.

cr [K, r] the K centroids in reduced dimensionality r.

Details

For more details see the help vignette: vignette("pls", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.pls(X=X, Y=Y, r=5) # use pls to project into 5 dimensions

16 lol.project.rp

lol.project.rp Random Projections (RP)

Description

A function for implementing gaussian random projections (rp).

Usage

lol.project.rp(X, r, scale = TRUE, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

r the rank of the projection. Note that r >= K, and r < d.

scale whether to scale the random projection by the sqrt(1/d). Defaults to TRUE.

... trailing args.

Value

A list containing the following:

A [d, r] the projection matrix from d to r dimensions.

Xr [n, r] the n data points in reduced dimensionality r.

Details

For more details see the help vignette: vignette("rp", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.rp(X=X, r=5) # use lol to project into 5 dimensions

lol.sims.cigar 17

lol.sims.cigar Stacked Cigar

Description

A simulation for the stacked cigar experiment.

Usage

lol.sims.cigar(n, d, rotate = FALSE, priors = NULL, a = 0.15, b = 4)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

a scalar for all of the mu1 but 2nd dimension. Defaults to 0.15.

b scalar for 2nd dimension value of mu2 and the 2nd variance term of S. Defaults
to 4.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

18 lol.sims.cross

Examples

library(lolR)
data <- lol.sims.cigar(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.cross Cross

Description

A simulation for the cross experiment, in which the two classes have orthogonal covariant dimen-
sions and the same means.

Usage

lol.sims.cross(n, d, rotate = FALSE, priors = NULL, a = 1, b = 0.25, K = 2)

Arguments

n the number of samples of simulated data.

d the dimensionality of the simulated data.

rotate With random rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

a scalar for the magnitude of the variance that is high within the particular class.
Defaults to 1.

b scalar for the magnitude of the varaince that is not high within the particular
class. Defaults to 2.

K the number of classes. Defaults to 2.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

lol.sims.fat_tails 19

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.cross(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.fat_tails Fat Tails Simulation

Description

A function for simulating from 2 classes with differing means each with 2 sub-clusters, where one
sub-cluster has a narrow tail and the other sub-cluster has a fat tail.

Usage

lol.sims.fat_tails(
n,
d,
rotate = FALSE,
f = 15,
s0 = 10,
rho = 0.2,
t = 0.8,
priors = NULL

)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

f the fatness scaling of the tail. S2 = f*S1, where S1_ij = rho if i != j, and 1 if i
== j. Defaults to 15.

s0 the number of dimensions with a difference in the means. s0 should be < d.
Defaults to 10.

rho the scaling of the off-diagonal covariance terms, should be < 1. Defaults to 0.2.

t the fraction of each class from the narrower-tailed distribution. Defaults to 0.8.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

20 lol.sims.khump

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.fat_tails(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.khump Multiclass Trunk

Description

A simulation for the multiclass hump experiment, in which each class has a unique hump which
distinguishes its mean.

Usage

lol.sims.khump(
n,
d,
rotate = FALSE,
priors = NULL,
b = 4,
K = 4,
var.dim = 100

)

lol.sims.khump 21

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

b scalar for mu scaling. Default to 4.

K the number of classes. Should be an even number. Defaults to 4.

var.dim the variance for each dimension. Defaults to 1.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

robust If robust is not false, a list containing inlier a boolean array indicating which
points are inliers, s.outlier the covariance structure of outliers, and mu.outlier
the means of the outliers.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

22 lol.sims.kident

lol.sims.kident Multiclass Trunk

Description

A simulation for the multiclass hump experiment, in which each class has a unique hump which
distinguishes its mean.

Usage

lol.sims.kident(n, d, rotate = FALSE, priors = NULL, b = 4, K = 4, maxvar = 25)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

b scalar for mu scaling. Default to 4.

K the number of classes. Should be an even number. Defaults to 4.

maxvar the maximum covariance between the two classes. Defaults to 100.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

robust If robust is not false, a list containing inlier a boolean array indicating which
points are inliers, s.outlier the covariance structure of outliers, and mu.outlier
the means of the outliers.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

lol.sims.ktrunk 23

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.ktrunk Multiclass Trunk

Description

A simulation for the multiclass trunk experiment, in which the maximal covariant dimensions are
the reverse of the maximal mean differences.

Usage

lol.sims.ktrunk(
n,
d,
rotate = FALSE,
priors = NULL,
b = 4,
K = 4,
maxvar = 100

)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

b scalar for mu scaling. Default to 4.

K the number of classes. Should be an even number. Defaults to 4.

maxvar the maximum covariance between the two classes. Defaults to 100.

24 lol.sims.mean_diff

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

robust If robust is not false, a list containing inlier a boolean array indicating which
points are inliers, s.outlier the covariance structure of outliers, and mu.outlier
the means of the outliers.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.mean_diff Mean Difference Simulation

Description

A function for simulating data in which a difference in the means is present only in a subset of
dimensions, and equal covariance.

Usage

lol.sims.mean_diff(
n,
d,
rotate = FALSE,
priors = NULL,
K = 2,
md = 1,

lol.sims.mean_diff 25

subset = c(1),
offdiag = 0,
s = 1

)

Arguments

n the number of samples of the simulated data.
d the dimensionality of the simulated data.
rotate whether to apply a random rotation to the mean and covariance. With random

rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.
priors the priors for each class. If NULL, class priors are all equal. If not null, should be

|priors| = K, a length K vector for K classes. Defaults to NULL.
K the number of classes. Defaults to 2.
md the magnitude of the difference in the means in the specified subset of dimen-

sions. Ddefaults to 1.
subset the dimensions to have a difference in the means. Defaults to only the first

dimension. max(subset) < d. Defaults to c(1).
offdiag the off-diagonal elements of the covariance matrix. Should be < 1. S_{ij} =

offdiag if i != j, or 1 if i == j. Defaults to 0.
s the scaling parameter of the covariance matrix. S_ij = scaling*1 if i == j, or

scaling*offdiag if i != j. Defaults to 1.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.
Y [n] the n labels as an array.
mus [d, K] the K class means in d dimensions.
Sigmas [d, d, K] the K class covariance matrices in d dimensions.
priors [K] the priors for each of the K classes.
simtype The name of the simulation.
params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.mean_diff(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

26 lol.sims.qdtoep

lol.sims.qdtoep Quadratic Discriminant Toeplitz Simulation

Description

A function for simulating data generalizing the Toeplitz setting, where each class has a different
covariance matrix. This results in a Quadratic Discriminant.

Usage

lol.sims.qdtoep(
n,
d,
rotate = FALSE,
priors = NULL,
D1 = 10,
b = 0.4,
rho = 0.5

)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

D1 the dimensionality for the non-equal covariance terms. Defaults to 10.

b a scaling parameter for the means. Defaults to 0.4.

rho the scaling of the covariance terms, should be < 1. Defaults to 0.5.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

lol.sims.random_rotate 27

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.qdtoep(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.random_rotate

Random Rotation

Description

A helper function for applying a random rotation to gaussian parameter set.

Usage

lol.sims.random_rotate(mus, Sigmas, Q = NULL)

Arguments

mus means per class.

Sigmas covariances per class.

Q rotation to use, if any

Author(s)

Eric Bridgeford

28 lol.sims.rev_rtrunk

lol.sims.rev_rtrunk Reverse Random Trunk

Description

A simulation for the reversed random trunk experiment, in which the maximal covariant directions
are the same as the directions with the maximal mean difference.

Usage

lol.sims.rev_rtrunk(
n,
d,
robust = FALSE,
rotate = FALSE,
priors = NULL,
b = 4,
K = 2,
maxvar = b^3,
maxvar.outlier = maxvar^3

)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

robust the number of outlier points to add, where outliers have opposite covariance of
inliers. Defaults to FALSE, which will not add any outliers.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

b scalar for mu scaling. Default to 4.

K number of classes, should be <4. Defaults to 2.

maxvar the maximum covariance between the two classes. Defaults to 100.

maxvar.outlier the maximum covariance for the outlier points. Defaults to maxvar*5.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

lol.sims.rotation 29

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

robust If robust is not false, a list containing inlier a boolean array indicating which
points are inliers, s.outlier the covariance structure of outliers, and mu.outlier
the means of the outliers.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.rotation Sample Random Rotation

Description

A helper function for estimating a random rotation matrix.

Usage

lol.sims.rotation(d)

Arguments

d dimensions to generate a rotation matrix for.

Value

the rotation matrix

Author(s)

Eric Bridgeford

30 lol.sims.rtrunk

lol.sims.rtrunk Random Trunk

Description

A simulation for the random trunk experiment, in which the maximal covariant dimensions are the
reverse of the maximal mean differences.

Usage

lol.sims.rtrunk(
n,
d,
rotate = FALSE,
priors = NULL,
b = 4,
K = 2,
maxvar = 100

)

Arguments

n the number of samples of the simulated data.
d the dimensionality of the simulated data.
rotate whether to apply a random rotation to the mean and covariance. With random

rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.
priors the priors for each class. If NULL, class priors are all equal. If not null, should be

|priors| = K, a length K vector for K classes. Defaults to NULL.
b scalar for mu scaling. Default to 4.
K number of classes, should be <=4. Defaults to 2.
maxvar the maximum covariance between the two classes. Defaults to 100.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.
Y [n] the n labels as an array.
mus [d, K] the K class means in d dimensions.
Sigmas [d, d, K] the K class covariance matrices in d dimensions.
priors [K] the priors for each of the K classes.
simtype The name of the simulation.
params Any extraneous parameters the simulation was created with.
robust If robust is not false, a list containing inlier a boolean array indicating which

points are inliers, s.outlier the covariance structure of outliers, and mu.outlier
the means of the outliers.

lol.sims.sim_gmm 31

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.sim_gmm GMM Simulate

Description

A helper function for simulating from Gaussian Mixture.

Usage

lol.sims.sim_gmm(mus, Sigmas, n, priors)

Arguments

mus [d, K] the mus for each class.

Sigmas [d,d,K] the Sigmas for each class.

n the number of examples.

priors K the priors for each class.

Value

A list with the following:

X [n, d] the simulated data.

Y [n] the labels for each data point.

priors [K] the priors for each class.

Author(s)

Eric Bridgeford

32 lol.sims.toep

lol.sims.toep Toeplitz Simulation

Description

A function for simulating data in which the covariance is a non-symmetric toeplitz matrix.

Usage

lol.sims.toep(n, d, rotate = FALSE, priors = NULL, D1 = 10, b = 0.4, rho = 0.5)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

rotate whether to apply a random rotation to the mean and covariance. With random
rotataion matrix Q, mu = Q*mu, and S = Q*S*Q. Defaults to FALSE.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

D1 the dimensionality for the non-equal covariance terms. Defaults to 10.

b a scaling parameter for the means. Defaults to 0.4.

rho the scaling of the covariance terms, should be < 1. Defaults to 0.5/

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

lol.sims.xor2 33

Examples

library(lolR)
data <- lol.sims.toep(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.sims.xor2 Xor Problem

Description

A function to simulate from the 2-class xor problem.

Usage

lol.sims.xor2(n, d, priors = NULL, fall = 100)

Arguments

n the number of samples of the simulated data.

d the dimensionality of the simulated data.

priors the priors for each class. If NULL, class priors are all equal. If not null, should be
|priors| = K, a length K vector for K classes. Defaults to NULL.

fall the falloff for the covariance structuring. Sigma declines by ndim/fall across the
variance terms. Defaults to 100.

Value

A list of class simulation with the following:

X [n, d] the n data points in d dimensions as a matrix.

Y [n] the n labels as an array.

mus [d, K] the K class means in d dimensions.

Sigmas [d, d, K] the K class covariance matrices in d dimensions.

priors [K] the priors for each of the K classes.

simtype The name of the simulation.

params Any extraneous parameters the simulation was created with.

Details

For more details see the help vignette: vignette("sims", package = "lolR")

Author(s)

Eric Bridgeford

34 lol.utils.decomp

Examples

library(lolR)
data <- lol.sims.xor2(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y

lol.utils.decomp A utility to use irlba when necessary

Description

A utility to use irlba when necessary

Usage

lol.utils.decomp(
X,
xfm = FALSE,
xfm.opts = list(),
ncomp = 0,
t = 0.05,
robust = FALSE

)

Arguments

X the data to compute the svd of.

xfm whether to transform the variables before taking the SVD.

• FALSEapply no transform to the variables.
• ’unit’unit transform the variables, defaulting to centering and scaling to

mean 0, variance 1. See scale for details and optional args.
• ’log’log-transform the variables, for use-cases such as having high variance

in larger values. Defaults to natural logarithm. See log for details and
optional args.

• ’rank’rank-transform the variables. Defalts to breaking ties with the average
rank of the tied values. See rank for details and optional args.

• c(opt1, opt2, etc.)apply the transform specified in opt1, followed by opt2,
etc.

xfm.opts optional arguments to pass to the xfm option specified. Should be a numbered
list of lists, where xfm.opts[[i]] corresponds to the optional arguments for
xfm[i]. Defaults to the default options for each transform scheme.

ncomp the number of left singular vectors to retain.

t the threshold of percent of singular vals/vecs to use irlba.

robust whether to use a robust estimate of the covariance matrix when taking PCA.
Defaults to FALSE.

lol.utils.deltas 35

Value

the svd of X.

Author(s)

Eric Bridgeford

lol.utils.deltas A function that performs a utility computation of information about
the differences of the classes.

Description

A function that performs a utility computation of information about the differences of the classes.

Usage

lol.utils.deltas(centroids, priors, ...)

Arguments

centroids [d, K] centroid matrix of the unique, ordered classes.

priors [K] vector containing prior probability for the unique, ordered classes.

... optional args.

Value

deltas [d, K] the K difference vectors.

Author(s)

Eric Bridgeford

lol.utils.info A function that performs basic utilities about the data.

Description

A function that performs basic utilities about the data.

Usage

lol.utils.info(X, Y, robust = FALSE, ...)

36 lol.utils.ohe

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples.

robust whether to perform PCA on a robust estimate of the covariance matrix or not.
Defaults to FALSE.

... optional args.

Value

n the number of samples.

d the number of dimensions.

ylabs [K] vector containing the unique, ordered class labels.

priors [K] vector containing prior probability for the unique, ordered classes.

Author(s)

Eric Bridgeford

lol.utils.ohe A function for one-hot encoding categorical respose vectors.

Description

A function for one-hot encoding categorical respose vectors.

Usage

lol.utils.ohe(Y)

Arguments

Y [n] a vector of the categorical resposes, with K unique categories.

Value

a list containing the following:

Yh [n, K] the one-hot encoded Y respose variable.

ylabs [K] a vector of the y names corresponding to each response column.

Author(s)

Eric Bridgeford

lol.xval.eval 37

lol.xval.eval Embedding Cross Validation

Description

A function for performing leave-one-out cross-validation for a given embedding model. This func-
tion produces fold-wise cross-validated misclassification rates for standard embedding techniques.
Users can optionally specify custom embedding techniques with proper configuration of alg.* pa-
rameters and hyperparameters. Optional classifiers implementing the S3 predict function can be
used for classification, with hyperparameters to classifiers for determining misclassification rate
specified in classifier.* parameters and hyperparameters.

Usage

lol.xval.eval(
X,
Y,
r,
alg,
sets = NULL,
alg.dimname = "r",
alg.opts = list(),
alg.embedding = "A",
classifier = lda,
classifier.opts = list(),
classifier.return = "class",
k = "loo",
rank.low = FALSE,
...

)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

r the number of embedding dimensions desired, where r <= d.

alg the algorithm to use for embedding. Should be a function that accepts inputs
X, Y, and has a parameter for alg.dimname if alg is supervised, or just X and
alg.dimname if alg is unsupervised.This algorithm should return a list contain-
ing a matrix that embeds from d to r <= d dimensions.

sets a user-defined cross-validation set. Defaults to NULL.

• is.null(sets) randomly partition the inputs X and Y into training and
testing sets.

38 lol.xval.eval

• !is.null(sets) use a user-defined partitioning of the inputs X and Y into
training and testing sets. Should be in the format of the outputs from
lol.xval.split. That is, a list with each element containing X.train,
an [n-k][d] subset of data to test on, Y.train, an [n-k] subset of class
labels for X.train; X.test, an [n-k][d] subset of data to test the model
on, Y.train, an [k] subset of class labels for X.test.

alg.dimname the name of the parameter accepted by alg for indicating the embedding dimen-
sionality desired. Defaults to r.

alg.opts the hyper-parameter options you want to pass into your algorithm, as a key-
worded list. Defaults to list(), or no hyper-parameters.

alg.embedding the attribute returned by alg containing the embedding matrix. Defaults to as-
suming that alg returns an embgedding matrix as "A".

• !is.nan(alg.embedding) Assumes that alg will return a list containing
an attribute, alg.embedding, a [d, r] matrix that embeds [n, d] data from
[d] to [r < d] dimensions.

• is.nan(alg.embedding) Assumes that alg returns a [d, r] matrix that
embeds [n, d] data from [d] to [r < d] dimensions.

classifier the classifier to use for assessing performance. The classifier should accept X, a
[n, d] array as the first input, and Y, a [n] array of labels, as the first 2 argu-
ments. The class should implement a predict function, predict.classifier,
that is compatible with the stats::predict S3 method. Defaults to MASS::lda.

classifier.opts

any extraneous options to be passed to the classifier function, as a list. Defaults
to an empty list.

classifier.return

if the return type is a list, class encodes the attribute containing the prediction
labels from stats::predict. Defaults to the return type of MASS::lda, class.

• !is.nan(classifier.return) Assumes that predict.classifier will
return a list containing an attribute, classifier.return, that encodes the
predicted labels.

• is.nan(classifier.return) Assumes that predict.classifer returns
a [n] vector/array containing the prediction labels for [n, d] inputs.

k the cross-validated method to perform. Defaults to 'loo'. If sets is provided,
this option is ignored. See lol.xval.split for details.

• 'loo' Leave-one-out cross validation
• isinteger(k) perform k-fold cross-validation with k as the number of

folds.

rank.low whether to force the training set to low-rank. Defaults to FALSE. If sets is
provided, this option is ignored. See lol.xval.split for details.

• if rank.low == FALSE, uses default cross-validation method with standard
k-fold validation. Training sets are k-1 folds, and testing sets are 1 fold,
where the fold held-out for testing is rotated to ensure no dependence of po-
tential downstream inference in the cross-validated misclassification rates.

lol.xval.eval 39

• if]coderank.low == TRUE, users cross-validation method with ntrain =
min((k-1)/k*n, d) sample training sets, where d is the number of dimen-
sions in X. This ensures that the training data is always low-rank, ntrain <
d + 1. Note that the resulting training sets may have ntrain < (k-1)/k*n,
but the resulting testing sets will always be properly rotated ntest = n/k to
ensure no dependencies in fold-wise testing.

... trailing args.

Value

Returns a list containing:

lhat the mean cross-validated error.

model The model returned by alg computed on all of the data.

classifier The classifier trained on all of the embedded data.

lhats the cross-validated error for each of the k-folds.

Details

For more details see the help vignette: vignette("xval", package = "lolR")

For extending cross-validation techniques shown here to arbitrary embedding algorithms, see the
vignette: vignette("extend_embedding", package = "lolR")

For extending cross-validation techniques shown here to arbitrary classification algorithms, see the
vignette: vignette("extend_classification", package = "lolR")

Author(s)

Eric Bridgeford

Examples

train model and analyze with loo validation using lda classifier
library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
r=5 # embed into r=5 dimensions
run cross-validation with the nearestCentroid method and
leave-one-out cross-validation, which returns only
prediction labels so we specify classifier.return as NaN
xval.fit <- lol.xval.eval(X, Y, r, lol.project.lol,

classifier=lol.classify.nearestCentroid,
classifier.return=NaN, k='loo')

train model and analyze with 5-fold validation using lda classifier
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
xval.fit <- lol.xval.eval(X, Y, r, lol.project.lol, k=5)

pass in existing cross-validation sets

40 lol.xval.optimal_dimselect

sets <- lol.xval.split(X, Y, k=2)
xval.fit <- lol.xval.eval(X, Y, r, lol.project.lol, sets=sets)

lol.xval.optimal_dimselect

Optimal Cross-Validated Number of Embedding Dimensions

Description

A function for performing leave-one-out cross-validation for a given embedding model, that allows
users to determine the optimal number of embedding dimensions for their algorithm-of-choice.
This function produces fold-wise cross-validated misclassification rates for standard embedding
techniques across a specified selection of embedding dimensions. Optimal embedding dimension is
selected as the dimension with the lowest average misclassification rate across all folds. Users can
optionally specify custom embedding techniques with proper configuration of alg.* parameters
and hyperparameters. Optional classifiers implementing the S3 predict function can be used for
classification, with hyperparameters to classifiers for determining misclassification rate specified in
classifier.*.

Usage

lol.xval.optimal_dimselect(
X,
Y,
rs,
alg,
sets = NULL,
alg.dimname = "r",
alg.opts = list(),
alg.embedding = "A",
alg.structured = TRUE,
classifier = lda,
classifier.opts = list(),
classifier.return = "class",
k = "loo",
rank.low = FALSE,
...

)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels. Defaults to NaN.#’ @param
alg.opts any extraneous options to be passed to the classifier function, as a list.
Defaults to an empty list. For example, this could be the embedding dimension-
ality to investigate.

rs [r.n] the embedding dimensions to investigate over, where max(rs) <= d.

lol.xval.optimal_dimselect 41

alg the algorithm to use for embedding. Should be a function that accepts inputs X
and Y and embedding dimension r if alg is supervised, or just X and embedding
dimension r if alg is unsupervised.This algorithm should return a list containing
a matrix that embeds from d to r < d dimensions.

sets a user-defined cross-validation set. Defaults to NULL.

• is.null(sets) randomly partition the inputs X and Y into training and
testing sets.

• !is.null(sets) use a user-defined partitioning of the inputs X and Y into
training and testing sets. Should be in the format of the outputs from
lol.xval.split. That is, a list with each element containing X.train,
an [n-k][d] subset of data to test on, Y.train, an [n-k] subset of class
labels for X.train; X.test, an [n-k][d] subset of data to test the model
on, Y.train, an [k] subset of class labels for X.test.

alg.dimname the name of the parameter accepted by alg for indicating the embedding dimen-
sionality desired. Defaults to r.

alg.opts the hyper-parameter options to pass to your algorithm as a keyworded list. De-
faults to list(), or no hyper-parameters. This should not include the number
of embedding dimensions, r, which are passed separately in the rs vector.

alg.embedding the attribute returned by alg containing the embedding matrix. Defaults to as-
suming that alg returns an embgedding matrix as "A".

• !is.nan(alg.embedding) Assumes that alg will return a list containing
an attribute, alg.embedding, a [d, r] matrix that embeds [n, d] data from
[d] to [r < d] dimensions.

• is.nan(alg.embedding) Assumes that alg returns a [d, r] matrix that
embeds [n, d] data from [d] to [r < d] dimensions.

alg.structured a boolean to indicate whether the embedding matrix is structured. Provides
performance increase by not having to compute the embedding matrix xv times
if unnecessary. Defaults to TRUE.

• TRUE assumes that if Ar: R^d -> R^r embeds from d to r dimensions and
Aq: R^d -> R^q from d to q > r dimensions, that Aq[, 1:r] == Ar,

• TRUE assumes that if Ar: R^d -> R^r embeds from d to r dimensions and
Aq: R^d -> R^q from d to q > r dimensions, that Aq[, 1:r] != Ar,

classifier the classifier to use for assessing performance. The classifier should accept X, a
[n, d] array as the first input, and Y, a [n] array of labels, as the first 2 argu-
ments. The class should implement a predict function, predict.classifier,
that is compatible with the stats::predict S3 method. Defaults to MASS::lda.

classifier.opts

any extraneous options to be passed to the classifier function, as a list. Defaults
to an empty list.

classifier.return

if the return type is a list, class encodes the attribute containing the prediction
labels from stats::predict. Defaults to the return type of MASS::lda, class.

• !is.nan(classifier.return) Assumes that predict.classifier will
return a list containing an attribute, classifier.return, that encodes the
predicted labels.

42 lol.xval.optimal_dimselect

• is.nan(classifier.return) Assumes that predict.classifer returns
a [n] vector/array containing the prediction labels for [n, d] inputs.

k the cross-validated method to perform. Defaults to 'loo'. If sets is provided,
this option is ignored. See lol.xval.split for details.

• 'loo' Leave-one-out cross validation
• isinteger(k) perform k-fold cross-validation with k as the number of

folds.

rank.low whether to force the training set to low-rank. Defaults to FALSE. If sets is
provided, this option is ignored. See lol.xval.split for details.

• if rank.low == FALSE, uses default cross-validation method with standard
k-fold validation. Training sets are k-1 folds, and testing sets are 1 fold,
where the fold held-out for testing is rotated to ensure no dependence of po-
tential downstream inference in the cross-validated misclassification rates.

• if]coderank.low == TRUE, users cross-validation method with ntrain =
min((k-1)/k*n, d) sample training sets, where d is the number of dimen-
sions in X. This ensures that the training data is always low-rank, ntrain <
d + 1. Note that the resulting training sets may have ntrain < (k-1)/k*n,
but the resulting testing sets will always be properly rotated ntest = n/k to
ensure no dependencies in fold-wise testing.

... trailing args.

Value

Returns a list containing:

folds.data the results, as a data-frame, of the per-fold classification accuracy.

foldmeans.data the results, as a data-frame, of the average classification accuracy for each r.

optimal.lhat the classification error of the optimal r

.

optimal.r the optimal number of embedding dimensions from rs

.

model the model trained on all of the data at the optimal number of embedding dimen-
sions.

classifier the classifier trained on all of the data at the optimal number of embedding
dimensions.

Details

For more details see the help vignette: vignette("xval", package = "lolR")

For extending cross-validation techniques shown here to arbitrary embedding algorithms, see the
vignette: vignette("extend_embedding", package = "lolR")

For extending cross-validation techniques shown here to arbitrary classification algorithms, see the
vignette: vignette("extend_classification", package = "lolR")

lol.xval.split 43

Author(s)

Eric Bridgeford

Examples

train model and analyze with loo validation using lda classifier
library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
run cross-validation with the nearestCentroid method and
leave-one-out cross-validation, which returns only
prediction labels so we specify classifier.return as NaN
xval.fit <- lol.xval.optimal_dimselect(X, Y, rs=c(5, 10, 15), lol.project.lol,

classifier=lol.classify.nearestCentroid,
classifier.return=NaN, k='loo')

train model and analyze with 5-fold validation using lda classifier
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
xval.fit <- lol.xval.optimal_dimselect(X, Y, rs=c(5, 10, 15), lol.project.lol, k=5)

pass in existing cross-validation sets
sets <- lol.xval.split(X, Y, k=2)
xval.fit <- lol.xval.optimal_dimselect(X, Y, rs=c(5, 10, 15), lol.project.lol, sets=sets)

lol.xval.split Cross-Validation Data Splitter

Description

A function to split a dataset into training and testing sets for cross validation. The procedure for
cross-validation is to split the data into k-folds. The k-folds are then rotated individually to form a
single held-out testing set the model will be validated on, and the remaining (k-1) folds are used for
training the developed model. Note that this cross-validation function includes functionality to be
used for low-rank cross-validation. In that case, instead of using the full (k-1) folds for training, we
subset min((k-1)/k*n, d) samples to ensure that the resulting training sets are all low-rank. We
still rotate properly over the held-out fold to ensure that the resulting testing sets do not have any
shared examples, which would add a complicated dependence structure to inference we attempt to
infer on the testing sets.

Usage

lol.xval.split(X, Y, k = "loo", rank.low = FALSE, ...)

Arguments

X [n, d] the data with n samples in d dimensions.

Y [n] the labels of the samples with K unique labels.

44 predict.nearestCentroid

k the cross-validated method to perform. Defaults to 'loo'.

• if k == round(k), performed k-fold cross-validation.
• if k == 'loo', performs leave-one-out cross-validation.

rank.low whether to force the training set to low-rank. Defaults to FALSE.

• if rank == FALSE, uses default cross-validation method with standard k-fold
validation. Training sets are k-1 folds, and testing sets are 1 fold, where the
fold held-out for testing is rotated to ensure no dependence of potential
downstream inference in the cross-validated misclassification rates.

• if rank == TRUE, users cross-validation method with ntrain = min((k-1)/k*n,
d) sample training sets, where d is the number of dimensions in X. This en-
sures that the training data is always low-rank, ntrain < d + 1. Note that
the resulting training sets may have ntrain < (k-1)/k*n, but the result-
ing testing sets will always be properly rotated ntest = n/k to ensure no
dependencies in fold-wise testing.

... optional args.

Value

sets the cross-validation sets as an object of class "XV" containing the following:

train length [ntrain] vector indicating the indices of the training examples.

test length [ntest] vector indicating the indices of the testing examples.

Author(s)

Eric Bridgeford

Examples

prepare data for 10-fold validation
library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
sets.xval.10fold <- lol.xval.split(X, Y, k=10)

prepare data for loo validation
sets.xval.loo <- lol.xval.split(X, Y, k='loo')

predict.nearestCentroid

Nearest Centroid Classifier Prediction

Description

A function that predicts the class of points based on the nearest centroid

predict.randomChance 45

Usage

S3 method for class 'nearestCentroid'
predict(object, X, ...)

Arguments

object An object of class nearestCentroid, with the following attributes:

• centroids[K, d] the centroids of each class with K classes in d dimensions.
• ylabs[K] the ylabels for each of the K unique classes, ordered.
• priors[K] the priors for each of the K classes.

X [n, d] the data to classify with n samples in d dimensions.

... optional args.

Value

Yhat [n] the predicted class of each of the n data point in X.

Details

For more details see the help vignette: vignette("centroid", package = "lolR")

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.nearestCentroid(X, Y)
Yh <- predict(model, X)

predict.randomChance Randomly Chance Classifier Prediction

Description

A function that predicts the maximally present class in the dataset. Functionality consistent with
the standard R prediction interface so that one can compute the "chance" accuracy with minimal
modification of other classification scripts.

Usage

S3 method for class 'randomChance'
predict(object, X, ...)

46 predict.randomGuess

Arguments

object An object of class randomChance, with the following attributes:

• ylabs[K] the ylabels for each of the K unique classes, ordered.
• priors[K] the priors for each of the K classes.

X [n, d] the data to classify with n samples in d dimensions.

... optional args.

Value

Yhat [n] the predicted class of each of the n data point in X.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.randomChance(X, Y)
Yh <- predict(model, X)

predict.randomGuess Randomly Guessing Classifier Prediction

Description

A function that predicts by randomly guessing based on the pmf of the class priors. Functionality
consistent with the standard R prediction interface so that one can compute the "guess" accuracy
with minimal modification of other classification scripts.

Usage

S3 method for class 'randomGuess'
predict(object, X, ...)

Arguments

object An object of class randomGuess, with the following attributes:

• ylabs[K] the ylabels for each of the K unique classes, ordered.
• priors[K] the priors for each of the K classes.

X [n, d] the data to classify with n samples in d dimensions.

... optional args.

predict.randomGuess 47

Value

Yhat [n] the predicted class of each of the n data point in X.

Author(s)

Eric Bridgeford

Examples

library(lolR)
data <- lol.sims.rtrunk(n=200, d=30) # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.classify.randomGuess(X, Y)
Yh <- predict(model, X)

Index

log, 12, 14, 34
lol.classify.nearestCentroid, 3
lol.classify.rand, 4
lol.classify.randomChance, 4
lol.classify.randomGuess, 5
lol.embed, 6
lol.project.bayes_optimal, 7
lol.project.dp, 8
lol.project.lol, 9
lol.project.lrcca, 11
lol.project.lrlda, 10, 12
lol.project.pca, 10, 13
lol.project.pls, 10, 15
lol.project.rp, 16
lol.sims.cigar, 17
lol.sims.cross, 18
lol.sims.fat_tails, 19
lol.sims.khump, 20
lol.sims.kident, 22
lol.sims.ktrunk, 23
lol.sims.mean_diff, 24
lol.sims.qdtoep, 26
lol.sims.random_rotate, 27
lol.sims.rev_rtrunk, 28
lol.sims.rotation, 29
lol.sims.rtrunk, 30
lol.sims.sim_gmm, 31
lol.sims.toep, 32
lol.sims.xor2, 33
lol.utils.decomp, 34
lol.utils.deltas, 35
lol.utils.info, 35
lol.utils.ohe, 36
lol.xval.eval, 37
lol.xval.optimal_dimselect, 40
lol.xval.split, 38, 41, 42, 43

predict.nearestCentroid, 44
predict.randomChance, 45
predict.randomGuess, 46

rank, 12, 14, 34

scale, 12, 14, 34

48

	lol.classify.nearestCentroid
	lol.classify.rand
	lol.classify.randomChance
	lol.classify.randomGuess
	lol.embed
	lol.project.bayes_optimal
	lol.project.dp
	lol.project.lol
	lol.project.lrcca
	lol.project.lrlda
	lol.project.pca
	lol.project.pls
	lol.project.rp
	lol.sims.cigar
	lol.sims.cross
	lol.sims.fat_tails
	lol.sims.khump
	lol.sims.kident
	lol.sims.ktrunk
	lol.sims.mean_diff
	lol.sims.qdtoep
	lol.sims.random_rotate
	lol.sims.rev_rtrunk
	lol.sims.rotation
	lol.sims.rtrunk
	lol.sims.sim_gmm
	lol.sims.toep
	lol.sims.xor2
	lol.utils.decomp
	lol.utils.deltas
	lol.utils.info
	lol.utils.ohe
	lol.xval.eval
	lol.xval.optimal_dimselect
	lol.xval.split
	predict.nearestCentroid
	predict.randomChance
	predict.randomGuess
	Index

